用人工智能解决心理问题 抑郁状态识别模型准确率达90%


中国产业经济信息网   时间:2024-06-07





  记者6月1日获悉,天津师范大学“认知与情感计算”跨学科融合创新团队依托天津市学生心理健康与智能评估重点实验室通过“人工智能+心理”这一方式,定制出个性化、精准化的心理健康评估、诊断、分析、干预解决方案。系列研究成果近期分别发表在国际期刊《神经网络》和《信息融合》上。


  当前,对青少年进行心理健康教育是解决青少年抑郁问题的有效途径之一,但目前心理健康行业供给侧存在不足。“抑郁症的早期筛查和精确诊断涉及神经科学、心理学、计算机科学和人工智能等多学科交叉融合与协同合作,需要汇集各专业优势,集中力量对心理健康中的实际科学问题和关键瓶颈技术进行突破和创新。”天津市学生心理健康与智能评估重点实验室主任、天津师范大学副校长白学军教授介绍。


  团队利用脑成像设备和学科优势,开展学生心理健康问题基础研究。在深化对学生心理健康问题认识和科学应对水平的同时,积极推进研究成果转化为心理健康预警方案和干预措施。


  在抑郁症精准评估和早期干预方面,团队与天津市安定医院合作,基于生态瞬时评估和语音的抑郁状态识别开展研究工作。


  团队核心成员赵子平教授介绍,该研究采用队列研究调查方法,收集了百余名符合诊断标准患者的步数、睡眠、主观报告、语音等数字表型信息,构建了基于深度学习的抑郁状态识别模型。模型识别准确率高达90%。


  在抑郁情绪识别方面,团队针对语音信号的时序特性,提出了一种联合并行卷积神经网络和自注意力残差卷积网络,搭配连接主义时间分类损失函数的语音情感识别方法。该方法可有效提升情感识别性能,为基于语音的抑郁症精准检测提供了重要手段。


  在基于脑电的情绪识别领域,创新团队探究了不同受试者的脑电信号之间的共性特征表示,提出了一种基于领域对抗网络方法的脑电信号情绪识别模型,情感识别准确率达92.44%。这为解决抑郁情绪识别中脑电信号的个体差异问题提供了有效解决方案。


  白学军表示,未来团队将继续坚持多学科交叉,产学研融合,致力于研究学生心理健康特点、变化规律、作用机制和新型心理健康诊疗技术的研发和应用转化,实现心理健康全方位、多维度、可视化、数字化评估与促进,助力健康产业发展。


  (记者陈曦 通讯员张立新 刘兆文)



  转自:科技日报

  【版权及免责声明】凡本网所属版权作品,转载时须获得授权并注明来源“中国产业经济信息网”,违者本网将保留追究其相关法律责任的权力。凡转载文章及企业宣传资讯,仅代表作者个人观点,不代表本网观点和立场。版权事宜请联系:010-65363056。

延伸阅读



版权所有:中国产业经济信息网京ICP备11041399号-2京公网安备11010502035964